

黑龙江省地方计量技术规范

JJF(黑) XX—2025

塑料量器校准规范

Calibration Specification for Plastic Containers

(审定稿)

2025-XX-XX 发布

2025-XX-XX 实施

塑料量器校准规范

Calibration Specification for Plastic Containers JJF(黑)XX-2025

归口单位:黑龙江省市场监督管理局

主要起草单位:哈尔滨市计量检定测试院

黑龙江省粮食质量安全监测和技术中心

国防科技工业2311区域计量站

参加起草单位:黑龙江省计量检定测试研究院

本规范主要起草人:

杨 瑾(哈尔滨市计量检定测试院)

张贻龙(哈尔滨市计量检定测试院)

陈丽萍 (黑龙江省粮食质量安全监测和技术中心)

何马琳(国防科技工业2311区域计量站)

孙 冬(哈尔滨市计量检定测试院)

张多利(哈尔滨市计量检定测试院)

王 萌(哈尔滨市计量检定测试院)

参加起草人:

单 青(黑龙江省计量检定测试研究院)

陆轶夫(哈尔滨市计量检定测试院)

目 录

引言	言	(II)
1	范围	(1)
2	引用文件	(1)
3	术语和计量单位	(1)
3.1	术语	(1)
4	概述	(1)
4.1	塑料量器的分类	(1)
4.2	塑料量器的结构	(1)
5	计量特性	(3)
5.1	容量示值误差	(3)
5.2	流出时间	(3)
6	校准条件	(4)
6.1	环境条件	(4)
6.2	校准设备	(4)
7	校准项目和校准方法	(5)
7.1	校准前准备	(5)
7.2	容量示值误差	(5)
7.3	流出时间	(7)
8	校准结果表达与处理	(8)
8.1	校准记录	(8)
8.2	校准结果的处理	(8)
9	复校时间间隔	(8)
附表	录 A 纯水密度表	(9)
附表	录 B 塑料量器衡量法 K(t) 值	(10)
附表	录 C 塑料量器校准记录格式(推荐性)	(13)
附表	录 D 塑料量器校准证书内页格式(推荐性)	(14)
附表	录 E 塑料量器容量测量结果的不确定度评定示例	(15)

引言

JJF 1071—2010《国家计量校准规范编写规则》、JJF 1001—2011《通用计量术语及 定义》和JJF 1059.1—2012《测量不确定度评定与表示》共同构成支撑本校准规范制定 工作的基础性系列规范。

本规范参考了JJG 196—2006《常用玻璃量器》的相关内容。

本规范为首次发布。

塑料量器校准规范

1 范围

本规范适用于单标线容量瓶、分度吸量管、单标线吸量管、滴定管、量筒、量杯等塑料量器的校准。

2 引用文件

本规范引用了下列文件:

JJG 196—2006 常用玻璃量器检定规程

GB/T 6682—2008 分析实验室用水规格和试验方法

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件, 其最新版本(包括所有的修改单)适用于本规范。

3 术语和计量单位

下列术语和定义适用于本规范。

3.1 术语

3.1.1 塑料量器 plastic container

由聚丙烯(PP)、聚甲基戊烯(PMP)、全氟烷氧基树脂(PFA)等材料制成用于量取 液体容量的仪器。

3.1.2 残留液 remaining liquid

对于吸量管,当液体自然流至流液口端不流时,流液口内残留的液体。

[JJF 196-2006, 3.10]

3.2 计量单位 measurement units

塑料量器的容量单位为毫升,符号为mL。

4 概述

4.1 塑料量器的分类

塑料量器是由聚丙烯 (PP)、聚甲基戊烯 (PMP)、全氟烷氧基树脂 (PFA)等材料制成的单标线容量瓶、分度吸量管、单标线吸量管、滴定管、量筒、量杯等量取液体容量的仪器。其中标记为"In"的量器为量入式,标记为"Ex"的量器为量出式。

4.2 塑料量器的结构

各类型塑料量器结构参见图 1~图 6。

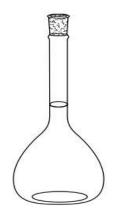


图1 单标线容量瓶

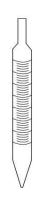


图2 分度吸量管

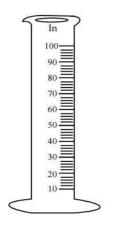


图3 量筒

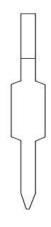


图4 单标线吸量管

图5 量杯

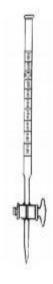


图6 滴定管

5 计量特性

5.1 容量示值误差

在标准温度20℃时,塑料量器容量示值误差应符合表1~表6的要求。

5.2 流出时间

分度吸量管、单标线吸量管、滴定管的流出时间应符合表2~表6的要求。

表1 单标线容量瓶计量特性一览表

标称 量/n		1	2	5	10	25	50	100	200	250	500	1000	2000
容量	12/3	± 0.010	±0.015	±0.020	± 0.020	±0.04	±0.06	±0.10	±0.15	±0.15	±0.25	±0.40	±0.60
允差 mL	_	±0.020	± 0.030	±0.040	±0.040	±0.060	±0.10	±0.20	±0.30	±0.30	±0.50	±0.80	±1.20

表2 分度吸量管计量特性一览表

标称容量 mL	0.1	0.2	0.25	0.5	1	2	5	10	25	50
容量允差 mL	±0.004	±0.006	±0.008	±0.010	±0.015	±0.025	±0.050	±0.10	±0.20	±0.20
流出时间 s		3 ~ 7		4 ~ 8	4 ~ 10	4 ~ 12	6 ~ 14	7 ~ 17	11~21	15~25

表3 量筒计量特性一览表

标称容量 mL	5	10	10	20	25	50	100	200	250	500	1000	2000
分度值 mL	0.1	0.1	0.2	0	.5	1	1	2	2	5	10	20
容量允许误差 mL	±0.10	±0.10	±0.20	土	0.5	±1	±1	<u>+</u>	2	±5	±10	±20

表4 单标线吸量管计量特性一览表

标称容量 mL	1	2	3	5	10	15	20	25	50	100
容量允差 mL	±0.015	±0.020	±0	.030	±0.040	±0.050	± 0	.060	±0.10	±0.16
流出时间 s	5~	-12	10~	~25	15~	~30	20~	~35	25~40	30~45

表5 量杯计量特性一览表

标称容量 mL	5	10	20	50	100	250	500	1000	2000
容量允许误差 mL	±0.2	±0.4	±0.5	±1.0	±1.5	±3.0	±6.0	±10	±20

表6 滴定管计量特性一览表

标称容量 mL	1	2	5	10	25	50	100
容量允差 mL	±0.020	±0.02fu0	± 0.020	±0.050	±0.08	±0.10	±0.20
流出时间 s	15~	~35	20~	~45	35~70	50~90	60~100

注:校准工作不判定符合与否,上述计量特性的指标仅供参考。

6 校准条件

6.1 环境条件

- 6.1.1 环境温度: (20±5) ℃, 且室温变化不大于1℃/h;
- 6.1.2 相对湿度:不大于80%。
- 6.1.3 水温与室温之差不得大于2℃。

6.2 测量标准及其他设备

测量标准及其它设备技术要求见表7。

表7 测量标准及其它设备技术要求

序号	名称	技术要求
1	电子天平	最大称量:不小于200g;实际分度值:0.1mg
2	电子天平	最大称量:不小于1000g;实际分度值:1mg
3	电子天平	最大称量:不小于5000g;实际分度值:10mg
4	电子秒表	(0~3600) s; MPE: ±0.5s/d
5	温度计	(0~30) °C; MPE: ±0.3 °C
6	校准介质	校准介质为纯水(蒸馏水或去离子水),应符合GB/T6682 《分析实验室用水规格和试验方法》要求。
7	辅助器具	滴定架、有盖称量杯等

7 校准项目和校准方法

7.1 校准前准备

校准前需将塑料量器清洗干净,对于量入式塑料量器,校准前应进行干燥处理。被校量器 应至少恒温4 h。

7.1.1 外观检查

检查塑料量器的材质、型式、标称容量、温度等标识,用目力观察内壁、口边应光滑、无毛刺,分度线与量的数值应清晰,无影响计量特性的外观缺陷。

7.1.2 密合性检查

校准具塞量器前,应检查密合性是否满足要求。注水至最高标线,塞子盖紧后颠倒 10次,每次颠倒时,在倒置状态下至少停留10 s,不应有水渗出。

7.2 容量示值误差

塑料量器的容量采用衡量法进行校准。

7.2.1 参考校准点的选取

1) 滴定管

1 mL~10 mL: 半容量和总容量二点:

25 mL: 5 mL、10 mL、15 mL、20 mL、25 mL五点;

50 mL: 10 mL、20 mL、30 mL、40 mL、50 mL五点;

100 mL: 20 mL、40 mL、60 mL、80 mL、100 mL五点;

2) 分度吸量管

a) 0.5 mL以下(包括0.5 mL)的检定点:

半容量(半容量~流液口)、总容量。

b) 0.5 mL以上(不包括0.5 mL)的检定点:

总容量的1/10、(若无总容量的1/10分度线,则检2/10点(自流液口起))、半容量(半容量~流液口)、总容量。

3) 量筒、量杯

总容量的1/10、(若无总容量的1/10分度线,则检2/10点(自底部起))、半容量(半容量~底部)、总容量。

7.2.3 单标线容量瓶容量示值的校准

对清洗干净并干燥处理过的容量瓶进行称量,称得空容量瓶的质量。注纯水至容量瓶的标线处,称得纯水的质量m。将温度计插入到容量瓶中,测量纯水的温度t,读数应准确到0.1 °C。按公式(1)计算容量瓶在标准温度20.0 °C时的实际容量。

7.2.4 分度吸量管、单标线吸量管容量示值的校准

对清洗干净的吸量管垂直放置,充水至最高标线以上5 mm处,擦去吸量管流液口外面的水。缓慢地将液面调整到被校准点分度线上,移去流液口的最后一滴水珠。取一只容量大于被校吸量管的带盖称量杯,称得空杯的质量。将流液口与称量杯内壁接触,称量杯角度倾斜 30° ,使水充分的流入称量杯中称得纯水的质量m。同时,测量水温t,读数应准确到0.1 °C。按公式(1)计算吸量管在标准温度20.0 °C时的实际容量。

7.2.5 滴定管容量示值的校准

将清洗干净的滴定管垂直夹在滴定架上,充水至最高标线以上5 mm处。同时排出流液口中的空气,缓慢地将液面调整到零位,移去流液口最后一滴水珠。取一只容量大于被校滴定管的带盖称量杯,称得空杯的质量。完全开启活塞(对于无塞滴定管应用力挤压玻璃小球),使水充分地从流液口流出。当液面降至校准点上约5 mm处,等待30 s,然后10 s内将液面调至被校准点分度线上,移去流液口的最后一滴水珠,称量纯水的质量m。同时,测量水温t,读数应准确到0.1 $\mathbb C$ 。按公式(1)计算滴定管在标准温度20.0 $\mathbb C$ 时的实际容量。

7.2.6 量筒、量杯容量示值的校准

对于量筒、量杯、清洗干净并干燥处理后进行称量,称得空量筒(杯)的质量。注纯水至校准点的标线处,称得纯水的质量m。将温度计插入到量筒(杯)中,测量纯水的温度t,读数应准确到0.1 °C。按公式(1)计算在标准温度20.0 °C时的实际容量。

7.2.7 实际容量的计算

$$V = \frac{m(\rho_B - \rho_A)}{\rho_B(\rho_W - \rho_A)} 1 + \beta(20 - t)$$
(1)

式中:

V — 标准温度20.0℃时量器的实际容量, mL:

m — 被校准量器所容纳纯水的质量, g:

 ρ_R — 砝码密度,取8.00g/cm³;

 ρ_{\star} — 校准时实验室内的空气密度, 取0.0012g/cm³;

 ρ_{w} — 纯水在t℃时的密度,g/cm³;

 β — 被校量器的体积膨胀系数, \mathbb{C}^{-1} ;

t — 校准时纯水的温度, \mathbb{C} 。

为简便计算过程,也可将公式(1)化为下列形式:

$$V = m \cdot K(t) \tag{2}$$

其中:

$$K(t) = \frac{\rho_B - \rho_A}{\rho_B \left(\rho_W - \rho_A\right)} \left[1 + \beta \left(20 - t\right)\right] \tag{3}$$

K(t)值列于附录 B中。根据测定的质量值m和测定水温所对应的K(t)值,即可由式公式(2)求出被校塑料量器在20.0 ℃时的实际容量。

凡使用需要实际值的校准,每个校准点重复测量2次,2次校准数据的差值应不超过被校塑料量器允差的1/4,并取2次测量结果的平均值作为实际容量值。

7.2.8 容量示值误差的计算

$$\Delta V = \overline{V} - V \tag{4}$$

式中:

 ΔV ——校准点的容量示值误差, mL;

V — 校准点的标称容量值, mL:

 \overline{V} —— 温度20.0℃时校准点的实际容量平均值,mL。

7.3 流出时间

7.3.1 分度吸量管和单标线吸量管

注水至最高标线以上约5 mm,然后将液面调至最高标线处。将吸量管垂直放置,流液口轻靠接水器壁,此时接水器约倾斜30°。在保持不动的情况下流出并开始计时,以流至口端不流时为止,其流出时间应符合表2和表3中的要求。

7.3.2 滴定管

将滴定管垂直夹在滴定架上,活塞处不应有水渗出。充水于最高标线,流液口不应接触接水器壁。将活塞完全开启并计时(对于无塞滴定管应用力挤压玻璃小球),使水充分地从流液口流出,直到液面降至最低标线为止的流出时间应符合表4的要求。

8 校准结果表达与处理

8.1 校准记录

校准记录内页格式参见附录C

8.2 校准结果的处理

校准证书内页格式参见附录D,校准证书应至少包括以下内容:

- a) 标题: "校准证书";
- b) 实验室名称和地址;
- c) 进行校准的地点(如果与实验室地点不同);
- d) 证书的唯一性标识(如编号),每页及总页数的标识;
- e) 客户的名称和地址;
- f)被校仪器的描述和明确标识(如型号、产品编号等);
- g) 进行校准的日期;
- h) 校准所依据的技术规范的标识,包括名称和代号;
- i) 本次校准所用测量标准的溯源性及有效性说明;
- i) 校准环境的描述;
- k) 校准结果及其测量不确定度说明:
- 1) 校准员及核验员的签名;
- m) 对校准规范的偏离的说明;
- n) 校准证书签发人的签名、职务或等效标识:
- o) 校准结果仅对被校对象有效的声明:
- p) 未经实验室书面批准,不得部分复制证书的声明。

9 复校时间间隔

复校时间间隔建议为12个月。

由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此,送校单位可根据实际使用情况自主决定复校时间间隔。

附录 A

纯水密度表

温度℃	密度 g/cm³	温度 ℃	密度 g/cm³	温度 ℃	密度 g/cm³	温度	密度 g/cm³
15.0	0.999099	17.8	0.998632	20.6	0.998077	23.4	0.997442
15.1	0.999084	17.9	0.998613	20.7	0.998056	23.5	0.997417
15.2	0.999069	18.0	0.998595	20.8	0.998035	23.6	0.997393
15.3	0.999053	18.1	0.998576	20.9	0.998013	23.7	0.997396
15.4	0.999038	18.2	0.998557	21.0	0.997991	23.8	0.997344
15.5	0.999022	18.3	0.998539	21.1	0.997970	23.9	0.997320
15.6	0.999006	18.4	0.998520	21.2	0.997948	24.0	0.997295
15.7	0.998991	18.5	0.998501	21.3	0.997926	24.1	0.997270
15.8	0.998975	18.6	0.998482	21.4	0.997904	24.2	0.997246
15.9	0.998959	18.7	0.998463	21.5	0.997882	24.3	0.997221
16.0	0.998943	18.8	0.998443	21.6	0.997859	24.4	0.997195
16.1	0.998926	18.9	0.998424	21.7	0.997837	24.5	0.997170
16.2	0.998910	19.0	0.998404	21.8	0.997815	24.6	0.997145
16.3	0.998893	19.1	0.998385	21.9	0.997792	24.7	0.997120
16.4	0.998876	19.2	0.998365	22.0	0.997769	24.8	0.997094
16.5	0.998860	19.3	0.998345	22.1	0.997747	24.9	0.997069
16.6	0.998843	19.4	0.998325	22.2	0.997724	25.0	0.997043
16.7	0.998826	19.5	0.998305	22.3	0.997701	25.1	0.997018
16.8	0.998809	19.6	0.998285	22.4	0.997678	25.2	0.996992
16.9	0.998792	19.7	0.998265	22.5	0.997655	25.3	0.996966
17.0	0.998774	19.8	0.998244	22.6	0.997631	25.4	0.996940
17.1	0.998757	19.9	0.998224	22.7	0.997608	25.5	0.996914
17.2	0.998739	20.0	0.998203	22.8	0.997584	25.6	0.996888
17.3	0.998722	20.1	0.998182	22.9	0.997561	25.7	0.996861
17.4	0.998704	20.2	0.998162	23.0	0.997537	25.8	0.996835
17.5	0.998686	20.3	0.998141	23.1	0.997513	25.9	0.996809
17.6	0.998668	20.4	0.998120	23.2	0.997490		
17.7	0.998650	20.5	0.998099	23.3	0.997466		

附录 B

塑料量器衡量法 K(t) 值

表B. 1 (聚丙烯 (PP) 体胀系数 $\beta\!\!=\!\!150\!\!\times\!\!10^{\text{-}6}/\mathbb{C}$,空气密度 $0.0012~\mathrm{g/cm^3}$)

水温 /℃	$K(t)/\text{cm}^3/\text{g}$	水温 /℃	$K(t)/\text{cm}^3/\text{g}$	水温 /℃	$K(t)/\mathrm{cm}^3/\mathrm{g}$
15.0	1.00316	18.7	1.00291	22.4	1.00258
15.1	1.00315	18.8	1.00290	22.5	1.00258
15.2	1.00314	18.9	1.00290	22.6	1.00258
15.3	1.00313	19.0	1.00289	22.7	1.00257
15.4	1.00312	19.1	1.00289	22.8	1.00257
15.5	1.00311	19.2	1.00289	22.9	1.00257
15.6	1.00311	19.3	1.00288	23.0	1.00257
15.7	1.00310	19.4	1.00288	23.1	1.00257
15.8	1.00309	19.5	1.00287	23.2	1.00257
15.9	1.00308	19.6	1.00287	23.3	1.00257
16.0	1.00307	19.7	1.00287	23.4	1.00257
16.1	1.00307	19.8	1.00286	23.5	1.00256
16.2	1.00306	19.9	1.00286	23.6	1.00256
16.3	1.00305	20.0	1.00286	23.7	1.00256
16.4	1.00304	20.1	1.00285	23.8	1.00256
16.5	1.00304	20.2	1.00285	23.9	1.00256
16.6	1.00303	20.3	1.00285	24.0	1.00256
16.7	1.00302	20.4	1.00284	24.1	1.00256
16.8	1.00302	20.5	1.00284	24.2	1.00256
16.9	1.00301	20.6	1.00284	24.3	1.00256
17.0	1.00300	20.7	1.00283	24.4	1.00256
17.1	1.00300	20.8	1.00283	24.5	1.00256
17.2	1.00299	20.9	1.00283	24.6	1.00256
17.3	1.00298	21.0	1.00283	24.7	1.00254
17.4	1.00298	21.1	1.00283	24.8	1.00256
17.5	1.00297	21.2	1.00282	24.9	1.00256
17.6	1.00297	21.3	1.00282	25.0	1.00257
17.7	1.00296	21.4	1.00282		
17.8	1.00295	21.5	1.00282		
17.9	1.00295	21.6	1.00282		
18.0	1.00294	21.7	1.00281		
18.1	1.00294	21.8	1.00281		
18.2	1.00293	21.9	1.00281		
18.3	1.00293	22.0	1.00259		
18.4	1.00292	22.1	1.00258		
18.5	1.00292	22.2	1.00258		
18.6	1.00291	22.3	1.00258		

塑料量器衡量法 K(t) 值

表B. 2(聚甲基戊烯 (PMP) 体胀系数 $\beta\!\!=\!\!117\!\!\times\!\!10^{\text{-}6}/\mathbb{C}$,空气密度 $0.0012~\mathrm{g/cm^3})$

水温 /℃	$K(t) / \text{cm}^3/\text{g}$	水温 /℃	$K(t)/\text{cm}^3/\text{g}$	水温 /℃	$K(t)/\text{cm}^3/\text{g}$
15.0	1.00376	18.5	1.00310	22.0	1.00235
15.1	1.00374	18.6	1.00308	22.1	1.00233
15.2	1.00372	18.7	1.00306	22.2	1.00232
15.3	1.00370	18.8	1.00305	22.3	1.00230
15.4	1.00368	18.9	1.00303	22.4	1.00229
15.5	1.00366	19.0	1.00301	22.5	1.00228
15.6	1.00364	19.1	1.00300	22.6	1.00226
15.7	1.00361	19.2	1.00298	22.7	1.00225
15.8	1.00359	19.3	1.00297	22.8	1.00223
15.9	1.00357	19.4	1.00295	22.9	1.00222
16.0	1.00355	19.5	1.00293	23.0	1.00221
16.1	1.00354	19.6	1.00292	23.1	1.00219
16.2	1.00352	19.7	1.00290	23.2	1.00218
16.3	1.00350	19.8	1.00289	23.3	1.00217
16.4	1.00348	19.9	1.00287	23.4	1.00216
16.5	1.00346	20.0	1.00286	23.5	1.00214
16.6	1.00344	20.1	1.00284	23.6	1.00213
16.7	1.00342	20.2	1.00282	23.7	1.00212
16.8	1.00340	20.3	1.00281	23.8	1.00211
16.9	1.00338	20.4	1.00279	23.9	1.00209
17.0	1.00336	20.5	1.00278	24.0	1.00208
17.1	1.00335	20.6	1.00277	24.1	1.00207
17.2	1.00333	20.7	1.00275	24.2	1.00206
17.3	1.00331	20.8	1.00274	24.3	1.00204
17.4	1.00329	20.9	1.00272	24.4	1.00203
17.5	1.00327	21.0	1.00271	24.5	1.00202
17.6	1.00325	21.1	1.00269	24.6	1.00201
17.7	1.00324	21.2	1.00268	24.7	1.00197
17.8	1.00322	21.3	1.00266	24.8	1.00199
17.9	1.00320	21.4	1.00265	24.9	1.00197
18.0	1.00318	21.5	1.00264	25.0	1.00196
18.1	1.00317	21.6	1.00262		
18.2	1.00315	21.7	1.00261		
18.3	1.00313	21.8	1.00260		
18.4	1.00311	21.9	1.00258		

塑料量器衡量法 K(t) 值表

表B. 3 (全氟烷氧基树脂 (PFA)体胀系数 β =390×10-6 /°C ,空气密度 0.0012 g/cm³)

水温 /℃	$K(t)/(cm^3/g)$	水温 /℃	$K(t)/(cm^3/g)$	水温 /℃	$K(t)/(\mathrm{cm}^3/\mathrm{g})$
15.0	1.00391	18.6	1.00312	22.2	1.00225
15.1	1.00388	18.7	1.00310	22.3	1.00223
15.2	1.00386	18.8	1.00308	22.4	1.00222
15.3	1.00384	18.9	1.00306	22.5	1.00220
15.4	1.00381	19.0	1.00304	22.6	1.00218
15.5	1.00379	19.1	1.00302	22.7	1.00217
15.6	1.00377	19.2	1.00301	22.8	1.00215
15.7	1.00374	19.3	1.00299	22.9	1.00213
15.8	1.00372	19.4	1.00297	23.0	1.00212
15.9	1.00370	19.5	1.00295	23.1	1.00210
16.0	1.00368	19.6	1.00293	23.2	1.00209
16.1	1.00365	19.7	1.00291	23.3	1.00207
16.2	1.00363	19.8	1.00289	23.4	1.00205
16.3	1.00361	19.9	1.00287	23.5	1.00204
16.4	1.00359	20.0	1.00286	23.6	1.00202
16.5	1.00356	20.1	1.00284	23.7	1.00201
16.6	1.00354	20.2	1.00282	23.8	1.00199
16.7	1.00352	20.3	1.00280	23.9	1.00198
16.8	1.00350	20.4	1.00278	24.0	1.00196
16.9	1.00348	20.5	1.00276	24.1	1.00195
17.0	1.00345	20.6	1.00275	24.3	1.00191
17.1	1.00343	20.7	1.00273	24.4	1.00190
17.2	1.00341	20.8	1.00271	24.5	1.00189
17.3	1.00339	20.9	1.00269	24.6	1.00187
17.4	1.00337	21.0	1.00268	24.7	1.00183
17.5	1.00335	21.1	1.00266	24.8	1.00184
17.6	1.00333	21.2	1.00264	24.9	1.00183
17.7	1.00331	21.3	1.00263	25.0	1.00181
17.8	1.00328	21.4	1.00261		
17.9	1.00326	21.5	1.00259		
18.0	1.00324	21.6	1.00258		
18.1	1.00322	21.7	1.00256		
18.2	1.00320	21.8	1.00254		
18.3	1.00318	21.9	1.00253		
18.4	1.00316	22.0	1.00229		
18.5	1.00314	22.1	1.00227		

附录 C

塑料量器校准记录格式 (推荐性)

委托单位	记录编号	
仪器名称	温度	
型号规格	相对湿度	
出厂编号	校准依据	
制造厂	校准地点	
校准人员	校准日期	
核验人员	备 注	

校准使用的计量标准器具

标准器名称 型号/规格 测量范围 不确定度/ 准确度等级/ 最大允许误差 有效期	

标称容量	<u> </u>	_mL	材 质:
水 温	i:	_°C	流出时间:

校准点	纯水质量/g	<i>K</i> (<i>t</i>) 值	$\overline{V}_{/\mathrm{mL}}$	示值误差	扩展不确定度

附录 D

塑料量器校准证书内页格式(推荐性) 校准结果

标称容量:	mL	材质:	
水 温:	$ _ ^{\mathbb{C}}$	流出时间:	

校准点	$\overline{V}_{/\mathrm{mL}}$	示值误差	扩展不确定度

以下空白

附录 E

塑料量器容量测量结果的不确定度评定示例

E.1 概述

- E.1.1 被校仪器: 单标线吸量管 (材质: 聚丙烯)
- E.1.2 测量标准: 电子天平: 测量范围: (0~210) g; 实际分度值0.1mg 温度计 : 测量范围: (0~50) ℃; MPE: ±0.3℃
- E.1.3 环境条件:环境温度: 20°C;相对湿度: 55%。
- E.1.4 测量方法: 依据本规范中的规定。
- E.2 测量模型

$$V = \frac{m(\rho_B - \rho_A)}{\rho_B(\rho_W - \rho_A)} [1 + \beta(20 - t)]$$
 (E. 1)

式中:

V — 标准温度 19.9 $^{\circ}$ 时量器的实际容量, mL;

m —— 被校准量器所容纳纯水的质量, g;

 ρ_{B} —— 砝码密度, 取 8.00 g/cm³;

 ρ_A — 校准时实验室内的空气密度, 取 0.0012 g/cm³;

 ρ_{W} —— 纯水在 \mathfrak{t} \mathbb{C} 时的密度, \mathfrak{g}/cm^{3} ;

 β — 被校量器的体积膨胀系数, $^{\circ}$ ℃-1

t — 校准时纯水的温度, $^{\circ}$ 。

E.2.1 方差和传播系数

$$u_{c}(V)^{2} = u(V)^{2} + c^{2}u(m)^{2} + c_{2}^{2}u(\rho_{A})^{2} + c_{3}u(\rho_{w})^{2} + c_{4}^{2}u(\beta)^{2} + c_{5}^{2}u(t)^{2}$$

$$c_{1} = \frac{\partial V}{\partial m} = \frac{\rho_{B} - \rho_{A}}{\rho_{B}(\rho_{W} - \rho_{A})} [1 + \beta(20 - t)]$$

$$c_{2} = \frac{\partial V}{\partial \rho_{A}} = \frac{m(\rho_{B} - \rho_{W})}{\rho_{B}(\rho_{W} - \rho_{A})^{2}} [1 + \beta(20 - t)]$$

$$c_{3} = \frac{\partial V}{\partial \rho_{B}} = \frac{m \cdot \rho_{A}}{\rho_{B}^{2}(\rho_{W} - \rho_{A})} [1 + \beta(20 - t)]$$

$$c_{4} = \frac{\partial V}{\partial \rho_{W}} = \frac{m(\rho_{B} - \rho_{A})}{\rho_{B}(\rho_{W} - \rho_{A})^{2}} \left[1 + \beta(20 - t)\right]$$

$$c_{5} = \frac{\partial V}{\partial t} = \frac{m\beta(\rho_{B} - \rho_{A})}{\rho_{B}(\rho_{W} - \rho_{A})}$$

$$c_{6} = \frac{m(\rho_{B} - \rho_{A})}{\rho_{B}(\rho_{W} - \rho_{A})} \cdot (20 - t)$$

E.3 标准不确定度的主要来源及各分量的评定

E.3.1 容量测量重复性引入的不确定度

A类标准不确定度按贝塞尔公式计算,从示值重复性实验中得到以下数据(mL): 9.9922、9.9898、9.9912、9.9906、9.9861、9.9822、9.9892、9.9994、9.9895、9.9889。

$$u(V) = s(V) = \sqrt{\frac{\sum_{i=1}^{n} \left(V_{i} - \overline{V}\right)^{2}}{n-1}} = 0.004386 mL$$

E.3.2 容量测量引入的不确定度分类u(m)

容量测量引入到不确定度取决于天平测量水质量带来的误差,现使用的天平称量范围为210g(分度值为0.1mg)的最大允许误差为±1.0 mg,服从均匀分布,所以:

$$u(m) = \frac{0.001}{\sqrt{3}} = 0.00058g$$

E.3.3 空气密度引入的不确定度分量 $u(\rho_{A})$

空气密度采用标准密度值,实际密度偏离标准密度最大为0.0012g×10%/cm³,服从均匀分布,所以:

$$u(\rho_A) = \frac{0.00012}{\sqrt{3}} = 0.00007 \text{g/cm}^3$$

E.3.4 砝码密度引入的不确定度分量 $u(\rho_R)$

对于一个标称密度为8.00 g/cm³的不锈钢砝码,其真实密度通常在7.90 g/cm³到8.10 g/cm³之间,其分布半宽 a=0.1g/cm³,服从均匀分布,所以:

$$u(\rho_B) = \frac{0.1}{\sqrt{3}} = 0.0577 \text{g/cm}^3$$

E.3.5 水密度测量引入的不确定度分量 $u(\rho_w)$

因容积的校准介质为纯水,所以密度采用了国际实际用温标水密度值,经实际检测 出水密度值与附录A对照,最大差值为0.00002 g/cm³,它服从均匀分布,所以:

$$u(\rho_W) = \frac{0.00002}{\sqrt{3}} = 0.000012 \text{g/cm}^3$$

E.3.6 容器体胀系数引入的不确定度分量 $u(\beta)$

测量过程中体胀系数变化为150×10⁻⁶/° \mathbb{C} ,属均匀分布,包含因子 $k = \sqrt{3}$ 则标准不确定度分量为

$$u(\beta) = \frac{0.0015}{\sqrt{3}} = 8.7 \times 10^{-4} \, / ^{\circ}\text{C}$$

E.3.7 水温测量引入的不确定度分量u(t)

在实际测量中采用数字测温仪进行实时监测,实测温度为19.9 $^{\circ}$ 0、由证书得 $U=0.1_{\circ}^{\circ}$ 0、 $(k=2)_{\circ}$ 0.1

$$u(t) = \frac{0.1}{2} = 0.05 \,^{\circ}\text{C}$$

E.4 标准不确定度分量表

输入量	分量来源	标准不确定度	灵敏系数C	$u(x_i)/ml$
u(V)	示值重复性	0.0014 mL	1	0.014
u(m)	天平	0.00058 g	1.00285 cm3 / g	0.000582
$u(ho_{_{ m A}})$	空气密度	0.00007 g /cm ³	8.76962 (cm ³) ² / g	0.000614
$u(ho_{_{ m B}})$	砝码密度	0.0577 g/ cm ³	0.00019(cm ³) ² /g	0.000011
$u(ho_{_{\mathrm{W}}})$	纯水密度	0.000012 g/ cm ³	10.04828(cm ³) ² /g	0.000121
$u(\beta)$	膨胀系数	8.7×10 ⁻⁴ / ℃	1.00182 cm³ °C	0.000872
u(t)	水温	0.05 ℃	$0.00150 \text{ cm}^3 / ^{\circ}\text{C}$	0.000075

E.5 标准不确定度 $u_c(V)$ 的评定

$$u_c(V) = \sqrt{u(V)^2 + c_1^2 u(M)^2 + c_2^2 u(\rho_A)^2 + c_3^2 u(\rho_w)^2 + c_4^2 u(\beta)^2 + c_5^2 u(t)^2} = 0.014 mL$$

E.6 扩展不确定度

取包含因子k=2,则:

$$U = k \cdot u_c(V) = 2 \times 0.014 mL = 0.028 mL$$

$$U = 0.03 \text{mL}, k = 2$$